Menü aufrufen
Toggle preferences menu
Persönliches Menü aufrufen
Nicht angemeldet
Ihre IP-Adresse wird öffentlich sichtbar sein, wenn Sie Änderungen vornehmen.

Machine Learning Glossary/K

Aus VELEVO®.WIKI

Verfasst von / Written by Sebastian F. Genter


K

Keras

High-level neural network API offering modular building blocks for deep learning. Key features include:

  • Intuitive interface for fast prototyping
  • Multi-backend support (TensorFlow as default)
  • Built-in convolutional/recurrent layers
  • Easy model export for production

Simplifies implementing CNNs, RNNs, and hybrid architectures through object-oriented design.

Kernel Support Vector Machines (KSVMs)

SVM variant using kernel functions to separate nonlinear data. Transforms inputs to higher dimensions via:

  • Radial Basis Function (RBF)
  • Polynomial kernels
  • Sigmoid mappings

Maximizes margin between classes while tolerating misclassifications via soft margins.

keypoints

Distinctive image locations identified through feature detection algorithms. Applications include:

  • Object tracking (SIFT features)
  • Panorama stitching (ORB descriptors)
  • Facial recognition (landmark points)

Characterized by invariant properties across scales/rotations.

k-fold cross validation

Robust evaluation technique splitting data into k equal partitions. Process:

  1. Train on k-1 folds
  2. Validate on remaining fold
  3. Repeat k times
  4. Average results

Reduces variance vs single split, especially valuable for small datasets.

k-means

Centroid-based clustering algorithm minimizing within-cluster variance. Steps:

  1. Initialize k centroids
  2. Assign points to nearest centroid
  3. Recalculate centroids
  4. Repeat until convergence

Requires predefined k, sensitive to initialization (use k-means++).

k-median

Clustering variant using Manhattan distance and median-based centroids. Advantages:

  • Robust to outliers
  • Handles noise better than k-means
  • Suitable for grid-like data distributions

Computationally heavier due to sorting requirements.